Abstract CT125

Evaluation of Potential Drug–Drug Interactions Between Futibatinib and CYP3A Inhibitors/Inducers, CYP3A Substrates, or Proton Pump Inhibitors

Copies of the poster and additional supplementary material can be accessed using the Quick Response (QR) code.

Background

- Futibatinib is an oral, highly selective, and irreversible fibroblast growth factor receptor (FGFR) 1–4 inhibitor with clinical activity in patients with advanced *FGFR*-aberrant tumors^{1–4}
- The recommended phase 2 dose, futibatinib 20 mg once daily (QD), demonstrated promising efficacy and tolerability in previously treated patients with intrahepatic cholangiocarcinoma harboring *FGFR2* fusions/rearrangements (interim results from FOENIX-CCA2)⁴
- In vitro experiments (data on file) showed that futibatinib
- Was predominantly metabolized by cytochrome p450 3A (CYP3A; hepatic microsomes)
- Exhibited time-dependent inhibition toward CYP3A (hepatic microsomes)
- Is a likely substrate of the drug transporter P-glycoprotein (P-gp; overexpressing cell line)
- In vitro, futibatinib's solubility decreased as pH increased (data on file) – Changes in gastric pH (induced by proton pump inhibitors [PPIs])⁵ may potentially affect futibatinib absorption and pharmacokinetics (PK)
- Three phase 1 studies were performed in healthy adult volunteers to evaluate potential drug–drug interactions (DDIs) of futibatinib with midazolam (CYP3A substrate), itraconazole (CYP3A/P-gp inhibitor), rifampin (CYP3A/P-gp inducer), and lansoprazole (PPI; Figure 1)⁶⁻⁸

Methods

- All 3 phase 1 studies were open-label, fixed-sequence, 2-period cross-over studies with a 1- or 2-day washout period between each dosing period
- All studies were conducted in healthy adult nonsmokers aged 18–55 years
- The drug dosing and administration schedule for each study is shown in **Figure 1** – Plasma PK samples were collected before through 24 h after midazolam dosing (study 1) or before through 48 h after futibatinib dosing (studies 2 and 3)
- PK parameters were calculated using a noncompartmental method (Phoenix[®] WinNonlin[®] v.7.0) and included the following:

- Area under the concentration-time curve from time 0 to the last observed/measured nonzero concentration (AUC_{0-t}), or from time 0 extrapolated to infinity (AUC_{0-inf}), and maximum observed concentration (C_{max}), time to C_{max} (T_{max}), and first-order terminal elimination half-life $(T_{1/2})$

• A linear mixed-effect analysis of variance (ANOVA) model was used to compare C_{max}, AUC_{0-inf}, and AUC_{0-t} between drugs administered alone or in combination with other agents

Ikuo Yamamiya,¹ John Laabs,² Allen Hunt,³ Toru Takenaka,⁴ Daryl Sonnichsen,⁵ Mark Mina,¹ Yaohua He,¹ Karim A. Benhadji¹ ¹Taiho Oncology, Inc., Princeton, NJ; ²Celerion, Tempe, AZ; ³Celerion, Lincoln, NE; ⁴Taiho Pharmaceuticals Co., Ltd., Tsukuba, Ibaraki, Japan; ⁵Sonnichsen Pharmaceutical Associates, LLC, Collegeville, PA

Results

Study 1: Effect of futibatinib on PK of midazolam (CYP3A substrate)

- Twenty-four participants were enrolled, received treatment, and completed the study
- Steady-state plasma concentrations of futibatinib were reached within 4 days of QD dosing
- Coadministration of futibatinib and midazolam resulted in the following:
- Midazolam plasma concentrations that were comparable to those observed with midazolam alone (Figure 2; Supplementary Table S1)
- No clinically significant changes in midazolam plasma exposure relative to midazolam administered alone (AUC_{0-t}, -9%; AUC_{0-inf}, -9%; C_{max}, -5%; **Table 1**)
- An earlier midazolam T_{max} versus midazolam alone (median difference, -0.17 h; P=0.0013), but this change was not clinically significant
- Both agents were well tolerated; no deaths, serious adverse events (AEs), or AE-related discontinuations were reported
- -42% of participants experienced ≥ 1 treatment-emergent AE
- All events were mild (grade 1) except for 1 grade 2 event of abdominal pain

Figure 2. Mean plasma concentration-time profile of midazolam administered with or ithout futibatinib

Table 1. Comparison of midazolam PK with or without futibatinib

	Geometric LS	Futibatinib + midazolam/	
	Futibatinib + midazolam (n=24)	Midazolam (n=24)	midazolam GMR (90% CI), %
C _{max} , ng/mL	9.41	9.95	94.56 (84.35–106.01)
AUC _{0-t} , ng·h/mL	24.64	27.04	91.13 (80.06–103.74)
AUC _{0-inf} , ng·h/mL	25.80	28.31	91.13 (80.16–103.59)

AUC_{0-t}, area under the plasma concentration-time curve from time 0 to time of last measured nonzero concentration; AUC_{0-inf}, area under the plasma concentration-time curve from time 0 extrapolated to infinity; C_{max}, maximum plasma concentration; CI, confidence interval; GMR, geometric mean ratio; LS, least squares; PK, pharmacokinetics.

Study 2: Effect of coadministration of itraconazole (strong CYP3A/P-gp inhibitor) or rifampin (strong CYP3A/P-gp inducer) on futibatinib PK

- Forty participants were enrolled; 20 received futibatinib and itraconazole, and 20 received futibatinib and rifampin
- All 40 participants completed the study
- Coadministration of futibatinib and itraconazole resulted in the following:
- Higher peak plasma futibatinib concentrations than with futibatinib alone, but with no alteration of the elimination phase (Figure 3A; Supplementary Table S2)
- Statistically significant increases in futibatinib plasma exposure relative to futibatinib administered alone (AUC_{0-t} and AUC_{0-inf}, +41% each; C_{max} , +51%; **Table 2**) - A significantly earlier futibatinib T_{max} than with futibatinib administered alone (median difference, -0.72 h; *P*=0.0071)
- Coadministration of futibatinib and rifampin resulted in the following:
- Lower mean plasma concentrations of futibatinib at all time points than with futibatinib administered alone (Figure 3B; Supplementary Table S3)
- Statistically significant decreases in futibatinib plasma exposure compared with futibatinib alone (AUC_{0-t} and AUC_{0-inf}, -64% each; C_{max} , -53%)
- No serious AEs, deaths, or discontinuations were reported in the study – Nineteen patients (48%) experienced AEs, mostly grade 1 in severity; no grade 3 or 4 AEs were reported

Table 2. Comparison of futibatinib PK with or without itraconazole or rifampin

	Itraconazole			Rifampin		
	Geometric LS means			Geometric	LS means	
	Futibatinib + itraconazole (n=20)	Futibatinib (n=20)	Futibatinib + itraconazole/ futibatinib GMR (90% CI), %	Futibatinib + rifampin (n=20)	Futibatinib (n=20)	Futibatinib + rifampin/ futibatinib GMR (90% CI), %
C _{max} , ng/mL	253.1	167.3	151.3 (127.6–179.3)	105.0	222.4	47.2 (41.1–54.3)
AUC _{0−t} , ng·h/mL	950.7	673.9	141.1 (122.4–162.6)	340.6	946.7	36.0 (30.5–42.4)
AUC _{0-inf} , ng·h/mL	956.5	679.0	140.9 (122.2–162.4)	344.4	954.9	36.1 (30.5–42.6)

AUC₀, area under the plasma concentration-time curve from time 0 to time of last measured nonzero concentration; AUC_{0 inf}, area under the plasma concentration-time curve from time 0 extrapolated to infinity; C_{max}, maximum plasma concentration; CI, confidence interval; GMR, geometric mean ratio; LS, least squares; PK, pharmacokinetics.

Study 3: Effect of coadministration of lansoprazole (PPI) on futibatinib PK

- Overall, 20 participants were enrolled and treated; all 20 completed the study
- Coadministration of futibatinib and lansoprazole resulted in the following:
- Plasma futibatinib concentrations that were comparable to those observed with futibatinib alone (Figure 4; Supplementary Table S4)
- No statistically or clinically significant changes in futibatinib plasma exposure relative to futibatinib administered alone (AUC_{0-t} +5%, AUC_{0-inf} +5%; C_{max} +8%; **Table 3**) – Marginal, nonsignificant changes in T_{max} (median difference, –0.02 h)
- No serious AEs, deaths, or discontinuations were reported
- Overall, 8 patients (40%) experienced AEs, the majority being grade 1 in severity; no grade 3 or 4 AEs were reported

Conclusions

- These results indicate that futibatinib is not expected to affect the exposure of concomitant medications metabolized via CYP3A, the most common drug metabolism pathway
- Caution should be exercised when coadministering strong CYP3A inducers or inhibitors with futibatinib because significant DDIs were observed with itraconazole and rifampin
- However, the <2-fold increase in plasma futibatinib exposures in the presence of itraconazole versus when administered alone suggests that futibatinib is not a sensitive CYP3A/P-gp substrate
- Futibatinib can be concomitantly administered with PPIs with no clinically relevant impact on futibatinib exposure

Reference

- **1.** Sootome H, et al. *Cancer Res.* 2020;80:4986–97.
- **2.** Bahleda R, et al. *Ann Oncol.* 2020;31:1405–12. **3.** Meric-Bernstam F, et al. Oral presentation at: AACR Annual
- Meeting, March 29–April 3, 2019; Atlanta, GA. CT238.
- **4.** Goyal L, et al. Oral presentation at: ASCO Annual Meeting, May 29–31, 2020; virtual meeting. Abstract 108.
- 5. Blum RA, et al. *Aliment Pharmacol Ther.* 1998;12:321–7.
- **6.** Hohmann N, et al. *Br J Clin Pharmacol.* 2015;79:278–85.
- 7. Heiskanen T, et al. Acta Anaesthesiol Scand. 2008;52:1319–26.
- **8.** Tran JQ, et al. *Clin Pharmacol.* 1999;39:487–94.

Figure 4. Mean plasma concentration-time profile of futibatinib administered with or without lansoprazole

Table 3. Comparison of futibatinib PK with or without lansoprazole

	Geometric L	Futibatinib + lansoprazole/	
	Futibatinib + lansoprazole (n=20)	Futibatinib (n=20)	futibatinib GMR (90% CI), %
C _{max} , ng/mL	234.3	216.1	108.4 (97.7–120.2)
AUC _{0-t} , ng·h/mL	983.3	934.0	105.3 (95.3–116.3)
AUC _{0-inf} , ng·h/mL	990.7	941.6	105.2 (95.3–116.2)

AUC_{0-t}, area under the plasma concentration-time curve from time 0 to time of last measured nonzero concentration; AUC_{0-inf}, area under the plasma concentration-time curve from time 0 extrapolated to infinity; C_{max}, maximum plasma concentration; CI, confidence interval; GMR, geometric mean ratio; LS, least squares; PK, pharmacokinetics.

Acknowledgments

- This study is sponsored by Taiho Oncology, Inc. • Professional medical writing and editorial assistance was provided by Vasupradha Vethantham, PhD, and Jennifer Robertson, PhD, at Ashfield MedComms, an
- Ashfield Health company, funded by Taiho Oncology, Inc.

Contact information Karim Benhadji, MD Taiho Oncology, Inc. clinicaltrialinfo@taihooncology.com