Evaluation of Potential Drug–Drug Interactions Between Futibatinib and CYP3A Inhibitors/Inducers, CYP3A Substrates, or Proton Pump Inhibitors

Ikuo Yamamia, John Laabs, Allen Hunt, Toru Takenaka, Daryl Sonnichsen, Mark Mina, Yoohua He, Karim A. Benhadji

Background
- Futibatinib is an oral, highly selective, and irreversible fibroblast growth factor receptor (FGFR) 1–4 inhibitor with clinical activity in patients with advanced FGFR2/3+ tumors. 1–4
- The recommended phase 2 dose, futibatinib 20 mg once daily (QD), demonstrated promising efficacy and tolerability in previously treated patients with metastatic colorectal cancer harboring FGFR2/3 fusion/amplifications. (Clinical trial results from FODIN-C2A2.)
- In vitro experiments (data on file) showed that futibatinib
 - Was predominantly metabolized by cytochrome P450 3A (CYP3A, hepatic microsomes)
 - Exhibited time-dependent inhibition toward CYP3A (hepatic microsomes)
- It is likely substrate of the drug transporter P-glycoprotein (P-gp; overexpressing cell line)
- In vivo, futibatinib’s solubility decreased as pH increased on data file
- Changes in gastric pH (induced by proton pump inhibitors [PPIs]) may potentially affect futibatinib absorption and pharmacokinetics (PK)
- A linear mixed-effect analysis of variance (ANOVA) model was used to compare Cmax, CYP3A, cytochrome p450 3A; D, day; P, period; P-gp: P-glycoprotein; PK, pharmacokinetics; PPI, proton pump inhibitor; QD, once daily.

Methods
- All 3 phase 1 studies were open label, fixed-sequence, 2-period cross over studies with a 1- or 2-day washout period between each dosing period.
- All studies were conducted in healthy adult nonsmokers aged 18–55 years.

Results

Study 1: Effect of futibatinib on PK of midazolam (CYP3A substrate)
- Twenty-four participants were enrolled, received treatment, and completed the study.
- Steady-state plasma concentrations of midazolam were reached within 4 days of OD-dosing.
- Coadministration of futibatinib and midazolam resulted in the following:
 - Midazolam plasma concentrations that were comparable to those observed with midazolam alone (Figure 2, Supplementary Table S1).
 - No clinically significant changes in midazolam plasma exposure relative to midazolam administered alone (AUC0–t, 96%; AUC0–inf, 99%; Cmax, 99%, Table 1).
 - As earlier midazolam concentrations higher than midazolam administered alone (median difference, −0.17 h; 90% CI, −0.63 to 0.30 h; P = 0.825), this change was not clinically significant.
 - Both agents were well tolerated, no deaths, serious adverse events (SAEs), or AE-related discontinuations were reported.
- All phase 1 studies were performed in healthy adult volunteers to evaluate potential drug–drug interactions (DDIs) of futibatinib with molecular CYP3A substrates, micromolar CYP3A4 inhibitor, (herpes) CYP3A4 inducer, and lossanoprazole (PPI). Figure 1).

Study 2: Effect of coadministration of itraconazole (strong CYP3A/P-gp inhibitor) or rifampin (strong CYP3A/P-gp inducer) on futibatinib PK on futibatinib PK
- Forty participants were enrolled; 20 received futibatinib and itraconazole, and 20 received futibatinib and rifampin.
- Twenty-four participants were enrolled, received treatment, and completed the study.
- Coadministration of futibatinib and midazolam resulted in the following:
 - A statistically significant increase in midazolam plasma exposure relative to midazolam administered alone (AUC0–t, 122.2–162.4) 344.4 954.9 36.1
 - AUC0–inf, 990.7 941.6 105.2 (95.3–116.3)
 - Cmax, 983.3 934.0 105.3 (95.3–116.3)
- No statistically or clinically significant changes in midazolam plasma exposure relative to midazolam administered alone (AUC0–t, AUC0–inf, Cmax).
- In patients with history of renal impairment, the majority being grade 1 in severity, no grade 3 or 4 AEs were reported.

Study 3: Effect of coadministration of lansoprazole (PPI) on futibatinib PK
- Overall, 20 participants were enrolled and treated; all 20 completed the study.
- Coadministration of futibatinib and lansoprazole resulted in the following:
 - Plasma futibatinib concentrations that were comparable to those observed with futibatinib administered alone (Figure 4).
- Overall, 8 patients (40%) experienced AEs, the majority being grade 1 in severity; no grade 3 or 4 AEs were reported.

Conclusions
- These results indicate that futibatinib is not expected to affect the exposure of concomitant medications metabolized on CYP3A, the most common drug metabolism pathway.
- Coadministration should be avoided with itraconazole, the strongest CYP3A4 inhibitors, or rifampin, the strongest CYP3A4 inducers, which may result in clinically significant DDIs that were observed with trastuzumab and radiotherapy.
- However, the c-2-fold increase in plasma futibatinib exposures in the presence of trastuzumab versus when administered alone suggests that futibatinib is not a sensitive CYP3A4/P-gp substrate.
- Futibatinib can be concomitantly administered with PPIs with no clinically relevant impact on futibatinib exposure.

Table 1. Comparison of midazolam PK with or without itraconazole or rifampin

<table>
<thead>
<tr>
<th>CYP3A/P-gp Inhibitor</th>
<th>AUC0–t, ng·h/mL</th>
<th>AUC0–inf, ng·h/mL</th>
<th>Cmax, ng/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itraconazole</td>
<td>304.0</td>
<td>908.7</td>
<td>36.1</td>
</tr>
<tr>
<td>Rifampin</td>
<td>304.0</td>
<td>908.7</td>
<td>36.1</td>
</tr>
</tbody>
</table>

Table 2. Comparison of futibatinib PK with or without lansoprazole

<table>
<thead>
<tr>
<th>CYP3A/P-gp Inhibitor</th>
<th>AUC0–t, ng·h/mL</th>
<th>AUC0–inf, ng·h/mL</th>
<th>Cmax, ng/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lansoprazole</td>
<td>105.3</td>
<td>994.9</td>
<td>105.3</td>
</tr>
</tbody>
</table>